Selected Papers

  1. K. Ozaki*, K. Kikuchi*, G. Zhu, K. Noda, Y. Yao, Y. Lu, R. Jha, H. Lee, and Y. Mizuno, “Noise mechanism clarification in external-modulation Brillouin optical correlation-domain reflectometry with double-sideband modulator,” Jpn. J. Appl. Phys., vol. 63, no. 7, 070904 (2024). *Co-first authors
  2. K. Kikuchi, H. Lee, R. Inoue, K. Ozaki, H. Sasage, and Y. Mizuno, “Accurate estimation of modulation amplitude in Brillouin optical correlation-domain reflectometry based on Rayleigh noise spectrum,” Sci. Rep., vol. 14, 8112 (2024).
  3. T. Nakanishi*, A. Kato*, Y. Wada, R. Nakashima, C. Zhao, C. Y. Lo, K. Nakamura, H. Lee, Y. Mizuno, and D. Yamane, “Multimode interference-based strain sensing using micro dry-etched perfluorinated polymer optical fibers,” Jpn. J. Appl. Phys., vol. 63, no. 2, 028003 (2024). *Co-first authors
  4. H. Sasage, K. Nakamura, Y. Mizuno, and H. Lee, “Simplified setup for Brillouin scattering observation using variable reflectivity mirror and its polarisation characteristics,” Electron. Lett., vol. 59, no. 24, e13053 (2023).
  5. Y. Suzuki, H. Lee, H. Sasage, K. Noda, K. Nakamura, and Y. Mizuno, “Proof-of-concept demonstration of double-slope-assisted Brillouin optical correlation-domain reflectometry,” Jpn. J. Appl. Phys., vol. 62, no. 10, 108005 (2023).
  6. M. Sakamoto, H. Sasage, K. Nakamura, Y. Mizuno, and H. Lee, “Influence of reference path length on self-heterodyne-based Brillouin observation,” Electron. Lett., vol. 59, no. 13, e12856 (2023).
  7. H. Sasage, M. Sakamoto, K. Noda, K. Nakamura, Y. Mizuno, and H. Lee, “Total spectral power-based method for estimating Brillouin frequency shift in optical fibers,” Jpn. J. Appl. Phys., vol. 62, no. 1, 018002 (2023).
  8. H. Lee, C. Zhao, T. Kiyozumi, K. Nakamura, and Y. Mizuno, “Fiber-optic temperature sensor based on inline core-cladding-mode Mach-Zehnder interferometry with dynamically controllable sensing length,” Appl. Phys. Express, vol. 15, no. 2, 022002 (2022).
  9. H. Lee, K. Noda, K. Nakamura, and Y. Mizuno, “Fiber-optic distributed measurement of polarization beat length using slope-assisted Brillouin optical correlation-domain reflectometry,” Opt. Rev., vol. 27, no. 6, 542-547 (2020).
  10. H. Lee, K. Nakamura, and Y. Mizuno, “Recent progress in slope-assisted Brillouin optical correlation-domain reflectometry,” Opt. Fiber Technol., vol. 59, 102312 (2020) <invited review>.
  11. H. Lee, K. Noda, Y. Mizuno, and K. Nakamura, “Trade-off relation between strain dynamic range and spatial resolution in slope-assisted Brillouin optical correlation-domain reflectometry,” Meas. Sci. Technol., vol. 30, no. 7, 075204 (2019).
  12. H. Lee, Y. Mizuno, and K. Nakamura, “Enhanced stability and sensitivity of slope-assisted Brillouin optical correlation-domain reflectometry using polarization-maintaining fibers,” OSA Contin., vol. 2, no. 3, pp. 874-880 (2019).
  13. H. Lee, K. Noda, Y. Mizuno, and K. Nakamura, “Distributed temperature sensing based on slope-assisted Brillouin optical correlation-domain reflectometry with over 10 km measurement range,” Electron. Lett., vol. 55, no. 5, pp. 276-278 (2019).
  14. H. Lee, Y. Ochi, T. Matsui, Y. Matsumoto, Y. Tanaka, H. Nakamura, Y. Mizuno, and K. Nakamura, “Distributed strain measurement and possible breakage detection of optical-fiber-embedded composite structure using slope-assisted Brillouin optical correlation-domain reflectometry,” Appl. Phys. Express, vol. 11, no. 7, 072501 (2018).
  15. H. Lee, T. Ma, Y. Mizuno, and K. Nakamura, “Bending-loss-independent operation of slope-assisted Brillouin optical correlation-domain reflectometry,” Sci. Rep., vol. 8, 7844 (2018).
  16. H. Lee, Y. Mizuno, and K. Nakamura, “Detection of 2-mm-long strained section in silica fiber using slope-assisted Brillouin optical correlation-domain reflectometry,” Jpn. J. Appl. Phys., vol. 57, no. 2, 020303 (2018).
  17. H. Lee, Y. Mizuno, and K. Nakamura, “Measurement sensitivity dependencies on incident power and spatial resolution in slope-assisted Brillouin optical correlation-domain reflectometry,”Sens. Actuat. A: Phys., vol. 268, pp. 68-71 (2017).
  18. H. Lee, N. Hayashi, Y. Mizuno, and K. Nakamura, “Slope-assisted Brillouin optical correlation-domain reflectometry using polymer optical fibers with high propagation loss,” J. Lightwave Technol., vol. 35, no. 11, pp. 2306-2310 (2017).
  19. H. Lee, N. Hayashi, Y. Mizuno, and K. Nakamura, “Operation of slope-assisted Brillouin optical correlation-domain reflectometry: comparison of system output with actual frequency shift distribution,” Opt. Express, vol. 24, no. 25, pp. 29190-29197 (2016).
  20. H. Lee, N. Hayashi, Y. Mizuno, and K. Nakamura, “Slope-assisted Brillouin optical correlation-domain reflectometry: proof of concept,” IEEE Photon. J., vol. 8, no. 3, 6802807 (2016).
  21. H. Lee, N. Hayashi, Y. Mizuno, and K. Nakamura, “Observation of Brillouin gain spectrum in optical fibers in telecommunication band: effect of pump wavelength,” IEICE Electron. Express, vol. 13, no. 3, 20151066 (2016).
  22. H. Lee, N. Hayashi, Y. Mizuno, and K. Nakamura, “Refractive index sensing using V-shaped polymer optical fibers,” Jpn. J. Appl. Phys., vol. 54, no. 11, 118001 (2015).

共著論文

  1. R. Takano, H. Javid, H. Lee, and Y. Mizuno, “Potential of twist sensing based on multimodal interference in polymer optical fibers without core offset,” IEICE Trans. Electron., accepted.
  2. M. Sano, K. Noda, H. Lee, and Y. Mizuno, “Slope-assisted configuration for fiber-optic multimodal interference temperature sensing,” Sens. Mater., vol. 36, no. 7, pp. 2727-2733 (2024).
  3. G. Zhu, K. Goya, K. Noda, R. Jha, H. Lee, and Y. Mizuno, “Brillouin characterization of ZBLAN fiber for strain and temperature sensing,” J. Lightwave Technol., vol. 42, no. 18, pp. 6381-6386 (2024).
  4. K. Wang, K. Kishizawa, K. Noda, W. Kurz, X. Dong, A. W. Koch, H. Lee, K. Nakamura, and Y. Mizuno, “Spectral power stabilization against temperature variations in multimode fiber Bragg gratings,” Appl. Phys. Express, vol. 17, no. 5, 052001 (2024).
  5. Y. Mizuno, K. Nakazawa, H. Javid, K. Noda, K. Nakamura, and H. Lee, “Fiber-optic temperature sensing using Raman spectrum near Rayleigh peak,” Opt. Fiber Technol., vol. 85, 103804 (2024).
  6. H. Javid, G. Zhu, K. Noda, S. Watanabe, K. Nakamura, H. Lee, and Y. Mizuno, “Reflectometric configuration for polymer optical fiber Bragg grating-based real-time tactile sensing,” Appl. Phys. Express, vol. 16, no. 11, 112001 (2023).
  7. K. Wang, Y. Mizuno, X. Dong, W. Kurz, M. Köhler, P. Kienle, H. Lee, M. Jakobi, and A. W. Koch, “Multimode optical fiber sensors: from conventional to machine learning-assisted,” Meas. Sci. Technol., vol. 35, no. 2, 022002 (2023) <invited review>.
  8. K. Otsubo, G. Zhu, T. Kiyozumi, K. Noda, K. Nakamura, H. Lee, and Y. Mizuno, “Systematic-error suppression in low-coherence Brillouin optical correlation-domain reflectometry,” Sci. Rep., vol. 13, 17531 (2023).
  9. K. Toda, K. Otsubo, K. Noda, H. Lee, K. Nakamura, and Y. Mizuno, “Fiber-optic temperature probe based on low-coherence Brillouin optical correlation-domain reflectometry,” Opt. Fiber Technol., vol. 81, 103435 (2023).
  10. S. Ochi, K. Ozaki, K. Noda, H. Lee, K. Nakamura, and Y. Mizuno, “Guideline for improving spatial resolution in direct-modulation Brillouin optical correlation-domain reflectometry,” Jpn. J. Appl. Phys., vol. 62, no. 8, 088001 (2023).
  11. Y. Mizuno, N. Motoishi, K. Noda, A. Theodosiou, K. Kalli, H. Lee, K. Nakamura, and M. A. Soto, “Fiber Bragg gratings operating across arbitrary wavelength ranges,” Appl. Phys. Express, vol. 16, no. 6, 062005 (2023).
  12. T. Miyamae, G. Zhu, T. Kiyozumi, K. Noda, H. Lee, K. Nakamura, and Y. Mizuno, “Observation of Rayleigh scattering by simplified optical correlation-domain reflectometry without frequency shifter,” Appl. Phys. Express, vol. 16, no. 5, 052004 (2023).
  13. K. Wang, Y. Mizuno, H. Lee, X. Dong, W. Kurz, M. Fink, M. Jakobi, and A. W. Koch, “Experimental demonstration of offset-induced sensitivity enhancement in SMS-based temperature and strain sensing,” Appl. Phys. Express, vol. 16, no. 5, 052003 (2023).
  14. G. Zhu, T. Miyamae, H. Takahashi, K. Noda, H. Lee, K. Nakamura, and Y. Mizuno, “Compensation of noise floor distortion in long-range simplified optical correlation-domain reflectometry without the use of electrical spectrum analyzer,” Appl. Phys. Express, vol. 16, no. 1, 012013 (2023).
  15. K. Wang, Y. Mizuno, X. Su, X. Dong, W. Kurz, M. Fink, H. Lee, M. Jakobi, and A. W. Koch, “Core diameter and numerical aperture dependences on the performance of fiber-optic multimode interference sensing,” Appl. Phys. Express, vol. 16, no. 1, 012003 (2023).
  16. K. Noda, H. Lee, S. Watanabe, K. Nakamura, and Y. Mizuno, “Potential of high-sensitivity tactile sensing using polymer optical fiber gratings,” Appl. Phys. Express, vol. 15, no. 12, 122005 (2022).
  17. G. Zhu, T. Miyamae, K. Noda, H. Lee, K. Nakamura, and Y. Mizuno, “High-speed high-resolution optical correlation-domain reflectometry without using electrical spectrum analyzer,” Opt. Laser Technol., vol. 161, no. 6, 109120 (2023).
  18. K. Wang, Y. Mizuno, K. Kishizawa, Y. Toyoda, H. Lee, K. Ichige, W. Kurz, X. Dong, M. Jakobi, and A. W. Koch, “Temperature sensing based on multimode interference in polymer optical fibers: sensitivity enhancement by PC-APC connections,” Jpn. J. Appl. Phys., vol. 61, no. 11, 118001 (2022).
  19. K. Noda, H. Lee, K. Nakamura, and Y. Mizuno, “Proposal of polarization optical correlation-domain reflectometry (POCDR),” J. Lightwave Technol., vol. 40, no. 16, pp. 5708-5715 (2022).
  20. K. Toda, K. Kishizawa, Y. Toyoda, K. Noda, H. Lee, K. Nakamura, K. Ichige, and Y. Mizuno, “Characterization of modal interference in multi-core polymer optical fibers and its application to temperature sensing,” Appl. Phys. Express, vol. 15, no. 7, 072002 (2022).
  21. T. Kiyozumi, T. Miyamae, K. Noda, H. Lee, K. Nakamura, and Y. Mizuno, “Super-simplified optical correlation-domain reflectometry,” Jpn. J. Appl. Phys., vol. 61, no. 7, 078005 (2022) [Featured in “Spotlights 2022“].
  22. G. Zhu, K. Kishizawa, K. Noda, H. Lee, K. Nakamura, and Y. Mizuno, “Wide-dynamic-range Brillouin optical correlation-domain reflectometry with 20-kHz sampling rate,” IEEE Sens. J., vol. 22, no. 7, pp. 6644-6650 (2022).
  23. T. Paixão, J. H. Belo, A. F. Carvalho, V. S. Amaral, J. P. Araújo, H. Lee, K. Nakamura, Y. Mizuno, P. André, and P. Antunes, “Magneto-responsive optical fiber with fuse-effect-induced fluorinated graphene oxide core,” Adv. Photon. Res., 2100209 (2022), before inclusion in an issue.
  24. A. Leal-Junior, C. Marques, H. Lee, K. Nakamura, and Y. Mizuno, “Sensing applications of polymer optical fiber fuse,” Adv. Photon. Res., 2100210 (2021), before inclusion in an issue <invited review>.
  25. T. Kiyozumi, T. Miyamae, K. Noda, H. Lee, K. Nakamura, and Y. Mizuno, “Pilot demonstration of correlation-domain LiDAR for high-speed vibration detection,” APL Photon., vol. 6, no. 10, 101302 (2021).
  26. J. N. Caceres, K. Noda, G. Zhu, H. Lee, K. Nakamura, and Y. Mizuno, “Spatial resolution enhancement of Brillouin optical correlation-domain reflectometry using convolutional neural network: proof of concept,” IEEE Access, vol. 9, pp. 124701-124710 (2021).
  27. Y. Mizuno, S. Liehr, A. Theodosiou, K. Kalli, H. Lee, and K. Nakamura, “Distributed polymer optical fiber sensors: a review and outlook,” Photon. Res., vol. 9, no. 9, pp. 1719-1733 (2021) <invited review> [Selected as Editors’ Articles of Interest].
  28. G. Zhu, K. Noda, H. Lee, K. Nakamura, and Y. Mizuno, “Error compensation in Brillouin optical correlation-domain reflectometry by combining bidirectionally measured frequency shift distributions,” Appl. Phys. Express, vol. 14, no. 5, 052006 (2021).
  29. K. Noda, H. Lee, K. Nakamura, and Y. Mizuno, “Brillouin optical correlation-domain reflectometry based on arbitrary waveform modulation: a theoretical study,” Opt. Express, vol. 29, no. 9, pp. 13794-13805 (2021).
  30. A. Leal-Junior, C. Díaz, A. Frizera, H. Lee, K. Nakamura, Y. Mizuno, C. Marques, “Highly sensitive fiber‐optic intrinsic electromagnetic field sensing,” Adv. Photon. Res., vol. 2, no. 1, 2000078 (2021) [Press Releases 1 2 3 4].
  31. K. Noda, H. Lee, K. Nakamura, and Y. Mizuno, “Measurement range enlargement in Brillouin optical correlation-domain reflectometry based on chirp modulation scheme,” Appl. Phys. Express, vol. 13, no. 8, 082003 (2020).
  32. N. Hayashi, Y. Mizuno, H. Lee, K. Nakamura, S. Y. Set, and S. Yamashita, “Characterization of cascaded forward Brillouin scattering seeded by backward stimulated Brillouin scattering in optical fibers,” IEICE Electron. Express, vol. 17, no. 12, 20200139 (2020) [ELEX Best Paper Award 2020].
  33. A. K. Das, H. Lee, K. Noda, Y. Mizuno, C. K. Y. Leung, and K. Nakamura, “Potential of mechanically induced cascaded long-period grating structure for reflectometric pressure, strain, and temperature sensing,” IEEE Sens. J., vol. 20, no. 18, pp. 10539-10546 (2020).
  34. Y. Mizuno, N. Motoishi, K. Noda, H. Lee, and K. Nakamura, “Effect of laser temperature control on Brillouin optical correlation-domain reflectometry,” Appl. Phys. Express, vol. 13, no. 5, 052001 (2020).
  35. Y. Mizuno, S. Hagiwara, H. Lee, N. Hayashi, M. Nishiyama, K. Watanabe, and K. Nakamura, “Strain and temperature dependencies of multimodal interference spectra in hetero-core-fiber structures,” Jpn. J. Appl. Phys., vol. 59, no. 5, 058002 (2020).
  36. Y. Mizuno, T. Ma, R. Ishikawa, H. Lee, A. Theodosiou, K. Kalli, and K. Nakamura, “Twist dependencies of strain and temperature sensitivities of perfluorinated graded-index polymer optical fiber Bragg gratings,” Appl. Phys. Express, vol. 12, no. 8, 082007 (2019).
  37. Y. Mizuno, G. Han, K. Noda, H. Lee, and K. Nakamura, “Low-cost Brillouin optical correlation-domain reflectometry involving merely one fibre amplifier,” Electron. Lett., vol. 55, no. 13, pp. 754-756 (2019) [Featured: “Reflect on this: Optical reflectometry implemented using only one fibre amplifier for distributed strain sensing,” Electron. Lett., vol. 55, no. 13, p. 720 (2019)].
  38. Y. Mizuno, S. Hagiwara, H. Lee, Y. Ochi, T. Matsui, Y. Matsumoto, Y. Tanaka, H. Nakamura, and K. Nakamura, “Infrared thermometry for breakage detection of optical fibers embedded in structures,” Appl. Phys. Express, vol. 12, no. 6, 062007 (2019).
  39. K. Noda, H. Lee, Y. Mizuno, and K. Nakamura, “First demonstration of Brillouin optical correlation-domain reflectometry based on external modulation scheme,” Jpn. J. Appl. Phys., vol. 58, no. 6, 068004 (2019).
  40. Y. Mizuno, R. Ishikawa, H. Lee, A. Theodosiou, K. Kalli, and K. Nakamura, “Potential of discriminative sensing of strain and temperature using perfluorinated polymer FBG,” IEEE Sens. J., vol. 19, no. 12, pp. 4458-4462 (2019).
  41. Y. Mizuno, H. Lee, N. Hayashi, and K. Nakamura, “Noise suppression technique for distributed Brillouin sensing with polymer optical fibers,” Opt. Lett., vol. 44, no. 8, pp. 2097-2100 (2019).
  42. Y. Mizuno, S. Hagiwara, N. Matsutani, K. Noda, H. Lee, and K. Nakamura, “Observation of multimodal interference in millimeter-long polymer optical fibers,” IEICE Electron. Express, vol. 16, no. 8, 20190135 (2019).
  43. Y. Mizuno, T. Ma, R. Ishikawa, H. Lee, A. Theodosiou, K. Kalli, and K. Nakamura, “Lorentzian demodulation algorithm for multimode polymer optical fiber Bragg gratings,” Jpn. J. Appl. Phys., vol. 58, no. 2, 028003 (2019).
  44. K. Noda, G. Han, H. Lee, Y. Mizuno, and K. Nakamura, “Proposal of external modulation scheme for fiber-optic correlation-domain distributed sensing,” Appl. Phys. Express, vol. 12, no. 2, 022005 (2019).
  45. Y. Mizuno, N. Matsutani, N. Hayashi, H. Lee, M. Tahara, H. Hosoda, and K. Nakamura, “Brillouin characterization of slimmed polymer optical fibers for strain sensing with extremely wide dynamic range,” Opt. Express, vol. 26, no. 21, pp. 28030-28037 (2018).
  46. Y. Mizuno, H. Lee, and K. Nakamura, “Recent advances in Brillouin optical correlation-domain reflectometry,” Appl. Sci., vol. 8, no. 10, 1845 (2018) <invited review>.
  47. A. G. Leal-Junior, A. Frizera, H. Lee, Y. Mizuno, K. Nakamura, C. Leitão, M. F. Domingues, N. Alberto, P. Antunes, P. André, C. A. F. Marques, and M. J. Pontes, “Design and characterization of curvature sensor using fused polymer optical fibers,” Opt. Lett., vol. 43, no. 11, pp. 2539-2542 (2018).
  48. Y. Mizuno, G. Numata, T. Kawa, H. Lee, N. Hayashi, and K. Nakamura, “Multimodal interference in perfluorinated polymer optical fibers: Application to ultrasensitive strain and temperature sensing,” IEICE Trans. Electron., vol. E101-C, no. 7, pp. 602-610 (2018) <invited review>.
  49. A. G. Leal-Junior, A. Frizera, H. Lee, Y. Mizuno, K. Nakamura, T. Paixão, C. Leitão, M. F. Domingues, N. Alberto, P. Antunes, P. André, C. A. F. Marques, and M. J. Pontes, “Strain, temperature, moisture, and transverse force sensing using fused polymer optical fibers,” Opt. Express, vol. 26, no. 10, pp. 12939-12947 (2018).
  50. Y. Mizuno, S. Hagiwara, T. Kawa, H. Lee, and K. Nakamura, “Displacement sensing based on modal interference in polymer optical fibers with partially applied strain,” Jpn. J. Appl. Phys., vol. 57, no. 5, 058002 (2018).
  51. A. G. Leal-Junior, A. Frizera, M. J. Pontes, P. Antunes, N. Alberto, M. F. Domingues, H. Lee, R. Ishikawa, Y. Mizuno, K. Nakamura, P. André, and C. A. F. Marques, “Dynamic mechanical analysis on fused polymer optical fibers: towards sensor applications,” Opt. Lett., vol. 43, no. 8., pp. 1754-1757 (2018).
  52. R. Ishikawa, H. Lee, A. Lacraz, A. Theodosiou, K. Kalli, Y. Mizuno, and K. Nakamura, “Strain dependence of perfluorinated polymer optical fiber Bragg grating measured at different wavelengths,” Jpn. J. Appl. Phys., vol. 57, no. 3, 038002 (2018).
  53. Y. Mizuno, H. Lee, N. Hayashi, and K. Nakamura, “Hydrostatic pressure dependence of Brillouin frequency shift in polymer optical fibers,” Appl. Phys. Express, vol. 11, no. 1, 012502 (2018).
  54. N. Matsutani, H. Lee, Y. Mizuno, and K. Nakamura, “Long-term stability enhancement of Brillouin measurement in polymer optical fibers using amorphous fluoropolymer,”Jpn. J. Appl. Phys., vol. 57, no. 1, 018001 (2018).
  55. R. Ishikawa, H. Lee, A. Lacraz, A. Theodosiou, K. Kalli, Y. Mizuno, and K. Nakamura, “Pressure dependence of fiber Bragg grating inscribed in perfluorinated polymer fiber,” IEEE Photon. Technol. Lett., vol. 29, no. 24, pp. 2167-2170 (2017).
  56. Y. Mizuno, H. Lee, S. Shimada, Y. Matsumoto, Y. Tanaka, H. Nakamura, and K. Nakamura, “Pilot demonstration of refractive index sensing using polymer optical fiber crushed with slotted screwdriver,” IEICE Electron. Express, vol. 14, no. 21, 20170962 (2017).
  57. T. Kawa, G. Numata, H. Lee, N. Hayashi, Y. Mizuno, and K. Nakamura, “Temperature sensing based on multimodal interference in polymer optical fibers: room-temperature sensitivity enhancement by annealing,” Jpn. J. Appl. Phys., vol. 56, no. 7, 078002 (2017).
  58. Y. Mizuno, H. Ujihara, H. Lee, N. Hayashi, and K. Nakamura, “Polymer optical fiber tapering using hot water,” Appl. Phys. Express, vol. 10, no. 6, 062502 (2017).
  59. T. Kawa, G. Numata, H. Lee, N. Hayashi, Y. Mizuno, and K. Nakamura, “Single-end-access strain and temperature sensing based on multimodal interference in polymer optical fibers,” IEICE Electron. Express, vol. 14, no. 3, 20161239 (2017).
  60. S. Shimada, H. Lee, M. Shizuka, H. Tanaka, N. Hayashi, Y. Matsumoto, Y. Tanaka, H. Nakamura, Y. Mizuno, and K. Nakamura, “Refractive index sensing using ultrasonically crushed polymer optical fibers,” Appl. Phys. Express, vol. 10, no. 1, 012201 (2017) [Featured in “Spotlights“].
  61. M. Shizuka, H. Lee, N. Hayashi, Y. Mizuno, and K. Nakamura, “Simplified optical correlation-domain reflectometry employing proximal reflection point,” Jpn. J. Appl. Phys., vol. 55, no. 12, 128003 (2016).
  62. N. Hayashi, H. Lee, Y. Mizuno, and K. Nakamura, “Observation of backward guided-acoustic-wave Brillouin scattering in optical fibers using pump-probe technique,” IEEE Photon. J., vol. 8, no. 3, 7100707 (2016).